Introduction

Diabetes mellitus is a major endocrine disorder that is a growing health problem in most countries [1]. It is an important cause of prolonged illnesses and early death [1-3]. Diabetes mellitus is clinically recognized by chronic elevation of the glucose level in the blood and is often accompanying by symptoms of the severe thirst, polyuria, polyphagia and weight loss [4]. The prevalence and incidence of diabetes is increasing in most populations, being more prominent in developing countries [5, 6]. Prevalence of diabetes mellitus in all countries is growing [7, 8]. More than 100 million people suffer from diabetes mellitus, and it is anticipated that their number may get to 5 times [9-11]. Many herbal products have been described as a prevention of diabetes mellitus [12]. Plant products are frequently considered to be less toxic and have less side effects than those of synthetic ones [13]. Urtica dioica is an herbal medicine used as expectorant, diuretic, hemostatic, and it is also used for the treatment of eczema and rheumatism. It is used as an anti-diabetic drug, too [14-16]. Farzami et al. reported that UD leaves extract in perfuse islet of langerhans induced insulin secretion in normal and stereptozotocin diabetic rats and caused reduced blood glucose [17]. In addition, Bnouham et al. investigated that aqueous extract of Urtica dioica has an antihyperglycemic activity [18]. Moreover, Avci et al. reported that Urtica dioica extract has antilipidemic effects in the mice fed with high cholesterol diet [19]. Urtica dioica aqueous and petroleum ether extracts improved lipid profile in normal and high fat diet rats [20, 21]. Since, in traditional medicines, plants decoction always are used, this survey was to evaluate the effect of Urtica dioica decoction on serum glucose and lipid profile in induced-stereptozotocin diabetic male rats.

Materials and Methods

This experiment was performed on 30 adult Wistar-Albino male rats, weighing 200-250 g which were separately housed in cages (one rat in each cage) and had free access to water and food. Animals were maintained in a room at 22±3 ºC with a fixed 12h artificial light period, (Timer Model: SUL180a, AC220V. China, 6 am to 6 pm), humidity of 45-70% and the air was adequately recycled. All animals were fed with a standard rodents’ diet. After a week, habituated animals were randomly
HDL was measured by precipitation of non-HDL blood samples were collected from cervical vein. Serum using standard methods (Technicon, USA). Afterwards, cholesterol (TCho) and triglyceride (TG) were measured. Blood sugar, serum, HDL, LDL, total dose of ether anesthesia and sacrificed by cervical decapitation. Blood sugar, serum, HDL, LDL, total (final weight), all animal were anesthetized under high R lipoproteins with dextran/MgSO₄ hours and the body weight of all the rats was measured (original volume and kept at 4ºC until its use within 1 week [21].

At the end of treatment, the rats were fasted for 12-14 hours and the body weight of all the rats was measured (final weight), all animal were anesthetized under high dose of ether anesthesia and sacrificed by cervical decapitation. Blood sugar, serum, HDL, LDL, total cholesterol (TCho) and triglyceride (TG) were measured using standard methods (Technicon, USA). Afterwards, blood samples were collected from cervical vein. Serum HDL was measured by precipitation of non-HDL lipoproteins with dextran/MgSO₄ followed by enzymatic cholesterol assay. LDL was finally calculated by Friedewald formula [22].

This experiment was carried out for a month, and water intake and food consumption were carefully measured during the treatment duration. Data were analyzed by SPSS-11. Variance analysis was used for the comparison of the groups. Tukey, test as a post hoc multiple comparison test, was applied to compare healthy control and diabetic groups. Data were expressed as mean±SD, and p-value less than 0.05 was considered significant.

Results

The results obtained from this survey showed that FBS, total cholesterol (TCho), triglyceride (TG), LDL, food and water intake significantly decreased in group C compared with those of group B (diabetic control group, Table 1). Initial body weight was similar in all the three groups, but final weight was lower in the diabetic groups compared with that of A, the normal group. At the same time in group C (Urtica Dioica decoction) body weight average was much higher than group B (p=0.03, Table 1). Fasting blood glucose (FBS) concentration increased in diabetic (B and C) groups compared with that in (normal) group A after STZ injection and continued the same until the end of the treatment duration, but FBS in group C significantly decreased compared with that of group B (Table 1).

The amount of food and water intake was higher in diabetic (B and C) groups compared with those of normal group (A), but these values were lower in group C compared with that of group B (p=0.02, p=0.01, Table 1).

Low density lipoprotein (LDL) concentration value was higher in diabetic groups (B and C) compared with that of group (A), but this value was lower in group C compared with that of group B (p=0.01, Table 1).

Total cholesterol (TCho) and triglyceride (TG) concentration in diabetic (B and C) group were higher than those of group A, but these values were significantly lower in group C compared with those in group B (p=0.001, p=0.03, Table 1).

Table 1. The effect of Urtica Dioica decoction on FBS and lipid profile in diabetic mal rat (N=10)

<table>
<thead>
<tr>
<th>Groups</th>
<th>Parameters</th>
<th>Glucose(mg/dl) Mean±SD</th>
<th>LDL(mg/dl) Mean±SD</th>
<th>TCho(mg/dl) Mean±SD</th>
<th>TG(mg/dl) Mean±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham control group (A)</td>
<td>84.4±5.5</td>
<td>7.29±12.5</td>
<td>62.9±12.2</td>
<td>49.16±11.3</td>
<td></td>
</tr>
<tr>
<td>Control group (B)</td>
<td>262±21.4</td>
<td>121.9±12.5</td>
<td>81.6±9.5</td>
<td>64±11.4</td>
<td></td>
</tr>
<tr>
<td>Test group (C)</td>
<td>196.8±22.1a</td>
<td>102.52±8.4b</td>
<td>74.63±8.9c</td>
<td>59.1±8.2c</td>
<td></td>
</tr>
<tr>
<td>p-Value</td>
<td>0.014</td>
<td>0.04</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Based on ANOVA and Tukey tests FBS, cholesterol, triglyceride and LDL value in C were significantly decreased compared with those of control group A: FBS, p<0.01 vs. B group. B: LDL, p<0.02 vs. B group. C: Cholesterol, p<0.001 vs. B group. D: Triglyceride, p<0.03 vs. Top of Form

Table 2. The effect of Urtica Dioica decoction on body weight food and water intake in diabetic mal rat (N=10).

<table>
<thead>
<tr>
<th>Groups</th>
<th>Parameters</th>
<th>Body weight (g) Mean±SD</th>
<th>Food intake (g) Mean±SD</th>
<th>Water intake (ml) Mean±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham control group (A)</td>
<td>245.1±15.5</td>
<td>22.1±2.03</td>
<td>65.2±10.3</td>
<td></td>
</tr>
<tr>
<td>Control group (B)</td>
<td>204.8±17.4</td>
<td>25.9±7.3</td>
<td>112.6±19.2</td>
<td></td>
</tr>
<tr>
<td>Test group (C)</td>
<td>223.2±13.1a</td>
<td>24.6±4.7b</td>
<td>82.6±8.9c</td>
<td>0.02</td>
</tr>
<tr>
<td>p-Value</td>
<td>0.14</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Based on ANOVA and Tukey tests FBS, cholesterol, triglyceride and LDL value in C were significantly decreased compared with those of control group A: Body weight, p<0.001 vs. B group. B: Food intake, p<0.02 vs. B group. C: Water intake, p<0.01 vs. B group
Discussion

In the present study, all the test animals were diabetic by single dose of intra peritoneal injection of streptozotocin (STZ, 65 mg/kg IP). The diabetic symptom were detected and observed with polyuria, polydipsia, polyphagia and hyperglycemia. Diabetic condition was established in the tests groups with high FBS measurement (more than 126 mg/dl) [16].

Farzama et al. reported that Urtica Dioica leaves extract in perfused islet of langerhans induced insulin secretion in normal and streptozotocin diabetic rats and caused reduced blood glucose [17]. In the present study, we showed that in Urtica Dioica decoction treatment group (C) serum glucose significantly decreased compared with those of group B. This may be due to the Urtica Dioica decoction stimulated β cells in islet of langerhans and increased serum insulin and reduced blood sugar in this group.

Results obtained from this survey showed that the Urtica Dioica decoction administration causes a decrease in FBS. Our results are in accordance with those of Bnouham et al. who reported that Urtica Dioica aqueous extract administration in alloxan-induced diabetic male rats causes decreased glucose tolerance test [18]. In addition, this report showed that Urtica Dioica aqueous extract acts on the small intestine absorption cells and affects on glucose homeostasis by inhibits glucose absorption. Bnouham et al. suggested that it is a mechanism for reduced blood glucose in diabetic animals which were under the Urtica Dioica extract treatment [18]. We supposed that Urtica dioica decoction acts on glucose influx and metabolism in the skeletal muscles and adipose tissue, and probably decreases blood glucose concentration. However, we could not measure the glucose influx and metabolism in the skeletal muscles and adipose tissue.

In the present study, we showed that the Urtica Dioica decoction administration causes decreasing total cholesterol (TCho), triglyceride (TG) and LDL. This section of the results is the same as that of Avci et al. who reported that the extracts of five traditional plants such as Urtica Dioica affected on lipid profile [19] and caused the reduced LDL concentration on enrich cholesterol fed male rat.

However, the other section of the results of the present study is in disagreement with those of Avci et al. who reported the Urtica Dioica aqueous extract did not affect on serum cholesterol and triglyceride in cholesterol fed male rat. This may be due to the fact that we examined the effects of Urtica Dioica decoction on lipids profile on diabetic male rats induced by STZ.

The results of the present study are in agreement with Dahr et al. study who investigated chronic intake Urtica Dioica aqueous and petroleum extract which had affected on blood lipid profile by reducing cholesterol and LDL concentration in hypercholesteromic diet male rats [20]. In addition, our finding showed that Urtica Dioica aqueous extract administration in group C caused the increased body weight, but food and water intake decreased which is in accordance with those of Kavalali et al. who reported that Urtica Dioica extract caused improved body weight loss, food and water intake in diabetic STZ rats [15].

These results obtained from this survey revealed that Urtica Dioica decoction causes decreased blood sugar and improved serum lipids in male diabetic rats which were induced by STZ.

Acknowledgements

The authors would like to thank the Deputy of Research of Zahedan Medical Science University for the financial supports that made this project possible (Code No. 872). We also thank Dr. Babiri laboratory which helped us in doing the experiments. Finally, we would like to acknowledge our colleague, Mr. Alireza Atashpanjeh, for reading and editing the final copy of this project.

Authors’ Contributions

Main Author: Mohammad Reza Shareki, Co-author: Elnaz Shafighi, Data Analysts: Ahmad Reza Shahreki and Hamideh Mirshekari.

Conflict of Interest

The authors declare no conflict of interest.

Funding/Support

Zahedan University of Medical Sciences.

References

